Skip to main content

Boundary Value Analysis and Equivalence Partitioning Testing

When it comes to a large pool of input data, it is not possible to perform exhausting testing for each set of test data. There should be an easy way to select test cases from the pool so that all scenarios are covered. This is when the Equivalence Partitioning & Boundary Value Analysis testing techniques were introduced. In today’s blog, I want to do further research on the testing technique of Boundary Value Analysis and Equivalence Partitioning Testing. Equivalence Partitioning and Boundary value analysis are linked to each other and can be used together at all levels of software testing. To start, Boundary value testing is the process of testing between extreme boundaries between the partitions, for example like start, end, lower, upper, maximum, minimum, just inside, and outside values. Normally Boundary value analysis is part of stress and negative testing. Using the Boundary Value Analysis technique tester creates test cases for the required input field.

Now when it comes to equivalence partitioning or equivalence class testing is a type of black box testing technique in which the input data units are divided into equivalent partitions that can be used to derive test cases. This helps with reducing the time required for testing a small number of test cases. This technique can be applied to all levels of software testing like system, unit, and integration. One of the examples that were widely used in many resources that I have look at is: let us say a password field accepts a minimum of 6 characters and a maximum of 10 characters, that means results for values in partitions 0-5, 6-10, 11-14 should be equivalent.  The three testing scenarios will be:

1       Enter 0 to 5 characters         System should not accept

2       Enter 6 to 10 characters       System should accept

3       Enter 11-to-14-character      System should not accept.

Equally, Both testing techniques are used to reduce a very large number of test cases to a manageable piece, Both are appropriate for calculating intensive applications with such a large number of variables and input data.

https://www.guru99.com/equivalence-partitioning-boundary-value-analysis.html

https://www.softwaretestingclass.com/boundary-value-analysis-and-equivalence-class-partitioning-with-simple-example/

Comments

Popular posts from this blog

Why use Docker?

  This week on my CS Journey, I want to talk about Docker. I know we went over several different activities in class; however, I was still a little confused, so I decided to look more into detail from outside sources to understand the concept and terms well. Docker is a tool designed to make it easier to create, deploy, and run applications by using containers. A container is not so much different than a Virtual Machine But, instead of creating a full operating system, a Docker Container has just the minimum set of operating system software needed for the application to run and rely on the host Linux Kernel itself. The first blog talked about the importance of docker and how to step a docker file in the root directory. There was a 12-minute video from YouTube that explained the concept very well. I learned a lot from that YouTube video. The blog also talked about creating a docker-compose file which is a tool that allows you to deploy and manage multiple containers at the same time.

JavaScript/Node.js

This week on my CS Journey, I want to look more into JavaScript and how it is used in docker. Although we did a few activities on JavaScript, I was still confused so I decided to read and research more into it. JavaScript is a text-based programming language used both on the client-side and server-side which is mainly for the web. Many of the websites use JavaScript on all browsers making JavaScript the most-deployed programming language in history. The name JavaScript is quote misleading due to the resemblance of java programming language however, JavaScript is completely different from the Java programming language. Both Java and JavaScript are written, assembled and executed differently, and each has dramatic differences when it comes to what it can do. JavaScript is mainly used for: Adding interactive behavior to web pages like Change the color of a button when the mouse hovers over it, displaying animations, creating web and mobile apps, Game development, and   building web server

Testing with Mockito

During class, we have been doing many testing methods including Junit 5 and for the past two weeks we have been using Mockito, so for today’s blog, I want to focus more on the framework and testing with Mockito. Before we get started let us talk about what is mocking. Mocking is a process of developing the objects that act as the mock or clone of the real objects. In another word, mocking is a technique where mock objects are used instead of real objects. The purpose is to isolate and focus on the code being tested. Mock uses objects such as Fakes, Stubs, and mocks. A fake object has working implementation but takes shortcuts which makes them not suitable for production. Stub object usually does not respond to anything outside that is programmed in for the test. Mocks are objects that are preprogrammed with expectations which form a specification of the call that is called to receive. Now let us move on to what Mockito is, Mockito is a java based mocking framework that internally use